最近有很多小伙伴咨询关于数据:8的问题,小编结合多年的经验整理出来一些数据8,6,5,2,7,9,12,4,12的第40百分位数是对应的资料,分享给大家。

数据:8最近什么情况数据8,6,5,2,7,9,12,4,12的第40百分位数是简介

现有一组数据:8,9,则 这组数据的算术平均数是多

算术平均数:

(1)适用:主要用于未分组的原始数据。设一组数据为X1,X2,...,Xn,简单的算术平均数的计算公式为:

本题中只有两个数据,

算术平均数=(8+9)/2=8.5。

数据分析的8个流程与7个常用思路

数据分析的8个流程与7个常用思路

在产品运营过程中,数据分析具有极其重要的战略意义,是产品优化和产品决策的核心大脑。因此做好数据分析,是产品运营中最重要的环节之一。

那么如何做好支付的数据分析呢?以下梳理出数据分析的8步流程,以及常见的7种分析思路。新手在启动数据分析前,最好跟主管或数据经验较丰富的童鞋确认每一步的分析流程。

一、数据分析八流程:

为什么分析?

首先,你得知道为什么分析?弄清楚此次数据分析的目的。比如,这次短信方式的数据分析,为什么要做这个分析。你所有的分析都的围绕这个为什么来回答。避免不符合目标反复返工,这个过程会很痛苦。

分析目标是谁?

分析目标是谁? 要牢记清楚的分析因子,统计维度是订单,还是用户,还是金额,还是用户行为。避免把订单当用户算,把用户当订单算(上周运营同学真实案例),算出的结果是差别非常大的。

想达到什么效果?

通过分析各个维度的用户,订单,找到真正的问题。例如这次的XX通道的分析,全盘下线,或维持现状不动,都不符合利益最大化原则。通过分析,找到真正的问题根源,发现用户精细化运营已经非常必要了。

需要哪些数据?

支付的数据,茫茫大海,数据繁多,用“海”来形容一点都不为过。需要哪些源数据?付费总额,付费人数?新老用户维度?付费次数?转移人数?留存率?用户特征?画像?先整理好思路,列一个表。避免数据部门同学今天跑一个数据,明天又跑一个数据,数据部门同学也会比较烦。

如何采集?

直接数据库调取?或者交给程序猿导出? 自己写SQL?运营同学不妨都学一下SQL,自力更生。

如何整理?

整理数据是门技术活。不得不承认EXCEL是个强大工具,数据透视表的熟练使用和技巧,作为支付数据分析必不可少,各种函数和公式也需要略懂一二,避免低效率的数据整理。Spss也是一个非常优秀的数据处理工具,特别在数据量比较大,而且当字段由特殊字符的时候,比较好用。

如何分析?

整理完毕,如何对数据进行综合分析,相关分析?这个是很考验逻辑思维和推理能力的。同时分析推理过程中,需要对产品了如指掌,对用户很了解,对渠道很熟悉。看似一个简单的数据分析,其实是各方面能力的体现。首先是技术层面,对数据来源的抽取-转换-载入原理的理解和认识;其实是全局观,对季节性、公司等层面的业务有清晰的了解;最后是专业度,对业务的流程、设计等了如指掌。练就数据分析的洪荒之力并非一朝一夕之功,而是在实践中不断成长和升华。一个好的数据分析应该以价值为导向,放眼全局、立足业务,用数据来驱动增长。运营同学比较容易聚在某个点上转圈走不出来。

如何展现和输出?

数据可视化也是一个学问。如何用合适的图表表现?每一种图表的寓意是什么?下面列举下常用的8个图表:

(1)、折线图:合适用于随时间而变化的连续数据,例如随时间收入变化,及增长率变化。

(2)、柱型图:主要用来表示各组数据之间的差别。主要有二维柱形图、三维柱形图、圆柱图、圆锥图和棱锥图。如支付宝与微信覆盖率差别。

(3)、堆积柱形图:堆积柱形图不仅可以显示同类别中每种数据的大小,还可以显示总量的大小。例如我们需要表示各个支付方式的人数及总人数时。

(4)、线-柱图:这种类型的图不仅可以显示出同类别的比较,还可以显示出趋势情况。

(5)、条形图:类似于横向的柱状图,和柱状图的展示效果相同,主要用于各项类的比较。

(6)、饼图:主要显示各项占比情况。饼图一般慎用,除非占比区别非常明显。因为肉眼对对饼图的占比比例分辨并不直观。而且饼图的项,一般不要超过6项。6项后建议用柱形图更为直观。

(7)、复合饼图:一般是对某项比例的下一步分析。

(8)、母子饼图:可直观地分析项目的组成结构与比重。例如上次短信支付能力用户中,没有第3方支付能力的用户,中间有X%比例是没银行卡,X%比例是没微信支付账号等。

图表不必太花哨,一个表说一个问题就好。用友好的可视化图表,节省阅读者的时间,也是对阅读者的尊重。

有一些数据,辛辛苦苦做了整理和分析,最后发现对结论输出是没有关系的,虽然做了很多工作,但不能为了体现工作量而堆砌数据。

在展现的过程中,请注明数据的来源,时间,指标的说明,公式的算法,不仅体现数据分析的专业度,更是对报告阅读者的尊重。

二、数据分析七思路:

简单趋势

通过实时访问趋势了解产品使用情况。如总流水,总用户,总成功率,总转化率。

多维分解

根据分析需要,从多维度对指标进行分解。例如新老用户、支付方式、游戏维度、产品版本维度、推广渠道、来源、地区、设备品牌等等维度。

转化漏斗

按照已知的转化路径,借助漏斗模型分析总体和每一步的转化情况。常见的转化情境有下单率,成功转化率等。

用户分群

在精细化分析中,常常需要对有某个特定行为的用户群组进行分析和比对;数据分析需要将多维度和多指标作为分群条件,有针对性地优化产品,提升用户体验。例如我们这次对短信这类用户,短信里又有第3方和无第3方支付能力的,需要再进行分群的运营。

细查路径

数据分析可以观察用户的行为轨迹,探索用户与产品的交互过程;进而从中发现问题、激发灵感亦或验证假设。例如我们这次对新用户的运营,也非常有意思。

留存分析

留存分析是探索用户行为与回访之间的关联。一般我们讲的留存率,是指“新增用户”在一段时间内“回访”的比例。通过分析不同用户群组的留存差异、使用过不同功能用户的留存差异来找到产品的增长点。

A/B 测试

A/B测试就是同时进行多个方案并行测试,但是每个方案仅有一个变量不同;然后以某种规则(例如用户体验、数据指标等)优胜略汰选择最优的方案。数据分析需要在这个过程中选择合理的分组样本、监测数据指标、事后数据分析和不同方案评估。

不单是支付的数据分析,其他的产品运营数据分析流程和思路也一样适用,只是支付数据相对其他产品而言,维度很多,以及组合的维度也非常多,因此就需要更清晰的思路和大局观,避免陷入到数据海洋中。

计算一组数据:8,9,10,11,12的方差为 A.1 B.2 C.3 D.

B

分析:先求出这5个数的平均数,然后利用方差公式求解即可.

解:样本8、11、9、10、12的平均数=(8+11+9+10+12)÷5=10,

∴S 2 = ×(4+1+1+0+4)=2.

故选:B.

已知5个数据:8,8,x,10,10.如果这组数据的某个众数与平均数相等,那么这组数据的中位数是 ______

设众数是8,则由

36+x

5

=8,

解得:x=4,故中位数是8;

设众数是10,则由

36+x

5

=10,

解得:x=14.

故中位数是10.

故答案为:8或10.

样本数据:8、9、8、9、10、8、9、9、8、10、7、9、9、8、10、7的众数是______

众数是一组数据中出现次数最多的数,这组数据中9出现的次数最多,所以众数为9.

故填9.

一组数据:8、14、12、14、13,中位数是12,总数是14。 ( )

错误。

求中位数时,必须对数据进行从小到大或从大到小排序,

8,12,13,14,14,,中位数是13,

众数为14是正确的。

以上就是同道区块链小编对数据:8和数据8,6,5,2,7,9,12,4,12的第40百分位数是的总结,更多数据8,6,5,2,7,9,12,4,12的第40百分位数是方面的知识可以关注我们,在网站首页进行搜索你想知道的!